Rational design of helical nanotubes from self-assembly of coiled-coil lock washers.

نویسندگان

  • Chunfu Xu
  • Rui Liu
  • Anil K Mehta
  • Ricardo C Guerrero-Ferreira
  • Elizabeth R Wright
  • Stanislaw Dunin-Horkawicz
  • Kyle Morris
  • Louise C Serpell
  • Xiaobing Zuo
  • Joseph S Wall
  • Vincent P Conticello
چکیده

Design of a structurally defined helical assembly is described that involves recoding of the amino acid sequence of peptide GCN4-pAA. In solution and the crystalline state, GCN4-pAA adopts a 7-helix bundle structure that resembles a supramolecular lock washer. Structurally informed mutagenesis of the sequence of GCN4-pAA afforded peptide 7HSAP1, which undergoes self-association into a nanotube via noncovalent interactions between complementary interfaces of the coiled-coil lock-washer structures. Biophysical measurements conducted in solution and the solid state over multiple length scales of structural hierarchy are consistent with self-assembly of nanotube structures derived from 7-helix bundle subunits. The dimensions of the supramolecular assemblies are similar to those observed in the crystal structure of GCN4-pAA. Fluorescence studies of the interaction of 7HSAP1 with the solvatochromic fluorophore PRODAN indicated that the nanotubes could encapsulate shape-appropriate small molecules with high binding affinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational design of a reversible pH-responsive switch for peptide self-assembly.

Peptide TZ1H, based on the heptad sequence of a coiled-coil trimer, undergoes fully reversible, pH-dependent self-assembly into long-aspect-ratio helical fibers. Substitution of isoleucine residues with histidine at the core d-positions of alternate heptads introduces a mechanism by which self-assembly is coupled to the protonation state of the imidazole side chain. Circular dichroism spectrosc...

متن کامل

Structural plasticity of helical nanotubes based on coiled-coil assemblies.

Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble i...

متن کامل

Unique temperature-dependent supramolecular self-assembly: from hierarchical 1D nanostructures to super hydrogel.

Supramolecular self-assembly can not only lead to a better understanding of biological systems, but also can enable rational building of complex and functional materials. In this report, hierarchical one-dimensional (1D) architectures involving nanotubes, coiled-coil ropelike structures, nanohelices, and nanoribbons are created via lanthanum-cholate supramolecular self-assembly. These sophistic...

متن کامل

New currency for old rope: from coiled-coil assemblies to α-helical barrels.

α-Helical coiled coils are ubiquitous protein-protein-interaction domains. They share a relatively straightforward sequence repeat, which directs the folding and assembly of amphipathic α-helices. The helices can combine in a number of oligomerisation states and topologies to direct a wide variety of protein assemblies. Although in nature parallel dimers, trimers and tetramers dominate, the pot...

متن کامل

Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces

A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 41  شماره 

صفحات  -

تاریخ انتشار 2013